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A dissipative process in systems subjected to a boundary perturbation is analyzed on the basis of quantum
mechanics. We show that the response of the system to the perturbation can be expressed in terms of the
first-passage time defined appropriately by quantum mechanics. In other words, the first-passage-time distri-
bution plays the role of the response function in the linear response theory. We apply this formalism to the
one-dimensional Anderson model in which a current is introduced at one end of the system and the other is
connected to an absorbing wall. We find that the frequency-dependent oscillations of the susceptibility reflect
the narrowness of the first-passage-time distribution in disordered systems.
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I. INTRODUCTION

Disordered systems such as amorphous alloys and mix-
tures of semiconductor particles exhibit interesting properties
with regard to transport phenomena because of their disorder.
In the last decade, boundary perturbation experiments con-
ducted by using intensity-modulated photocurrent spectros-
copy �IMPS� �1� and the frequency response method �2� have
been introduced for obtaining information on the transport
properties of disordered systems. In ordinary experiments,
the perturbation is applied to the entire system; however, in
boundary perturbation experiments, a time-dependent pertur-
bation is applied at one end of the system and the response to
this perturbation is measured at the other end. The time de-
pendence of the response to the boundary perturbation pro-
vides considerable information on the dynamics of the sys-
tem.

For theoretically analyzing boundary perturbation experi-
ments, Kawasaki et al. introduced a random walk model with
an absorbing boundary �3,4�. In their study, the first-passage-
time distribution �FPTD� of a walker with respect to the ab-
sorbing boundary was shown to correspond to the response
function of the boundary perturbation. Although their analy-
sis was limited to the classical random walk system, it is
expected that the correspondence between the first-passage
time and the response to the boundary perturbation is univer-
sal since the response is generated after the information on
the perturbation that is applied at one end propagates to the
other end.

In the linear response theory, the response function, which
relates the perturbation to the response, is equal to the time
correlation function of the fluctuation in the equilibrium
state. This random walk model exploited by Kawasaki et al.
is based on the generalized random walk theory of Odagaki
and Lax �5�, which related the admittance for localized
physical quantities to the random walk on the basis of the
linear response theory �6,7�. Therefore, it is important to
clarify whether the response function is represented by the
FPTD in boundary perturbation experiments for nonlocalized

physical quantities subjected to quantum mechanics.
In contrast to classical mechanics, the trajectory of a par-

ticle is uncertain in quantum mechanics; therefore, the first-
passage time or arrival time is difficult to define. The arrival
time in quantum systems has been widely studied �8�, and
several definitions have been proposed �8–18�. Muga and
co-workers proposed a definition based on the complex ab-
sorbing potential at the arrival point �9–11�, and Marchewka
and Schuss defined the arrival time by using Feynman inte-
grals �13–15�. Yamada and Takagi discussed the definition of
arrival times within the consistent-histories approach �18�. In
contrast to the difficulties in the theoretical treatment of the
arrival time, many experiments actually measure the arrival
time of elementary particles and atoms using some methods.
In these experiments, an apparatus dependence is allowed
and the arrival time is clearly defined by the detection of
particles. By exploiting this apparatus-dependent arrival
time, we show that the first-passage time can be related to the
response to the boundary perturbation.

In Sec. II, we formulate the boundary perturbation experi-
ment for quantum systems and prove that the response to
boundary perturbation can be expressed by mean of the
FPTD. In Sec III, we apply this formulation to a one-
dimensional disordered system and show that certain aspects
of the response to the boundary perturbation represent the
characteristics of randomness. Finally, a summary and dis-
cussion are provided in Sec. IV.

II. MODEL FOR BOUNDARY PERTURBATION
EXPERIMENT IN A QUANTUM MECHANICAL SYSTEM

A. First-passage-time distribution

We consider particles described by the Schrödinger equa-
tion for the state vector ���t��:

i �
�

�t
���t�� = Ĥ���t�� , �1�

where the Hamiltonian comprises the Hermitian part Ĥ0 and

non-Hermitian part Â, which represents the absorbing
effect—i.e.,*Electronic address: t.okubo@cmt.phys.kyushu-u.ac.jp
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Ĥ = Ĥ0 + Â . �2�

Considering the effects of statistical mixing, we introduce
the density operator �̂�t� of this system as

�̂�t� = �
m

��m�t���m��m�t�� , �3�

where ��m� represents the pure state of the system. The time
evolution of the density operator follows the Neumann equa-
tion

�

�t
�̂�t� =

1

i�
�Ĥ�̂�t� − �̂�t�Ĥ†� , �4�

where Ĥ† represents the Hermite conjugate of Hamiltonian

H. Note that Ĥ†�Ĥ in our system because of the non-

Hermitian part Â. Because of this non-Hermitian part, the
trace of the density operator is not conserved and varies with
time. The trace of Eq. �4� evolves as

�

�t
Tr�̂�t� =

1

i�
	Tr�Ĥ�̂�t�� − Tr��̂�t�Ĥ†�


=
1

i�
Tr��Â − A†ˆ ��̂�t�� . �5�

Note that if Â represents the absorbing channel, the right-
hand side of Eq. �5� would be nonpositive.

Now, we represent the density operator with the basis vec-
tors in space coordinates �r�; this is useful when considering
boundary perturbation experiments:

��r,r�,t� = �r��̂�t��r�� = �
m

�m�m�r,t��m
* �r�,t� . �6�

In the above equation, �m�r , t� denotes the wave function of
the pure state m,

�m�r,t� = �r��m�t�� , �7�

and * represents a complex conjugate. The diagonal elements
of the density matrix ��r ,r , t� correspond to the probability
density of the position of the particle at time t.

The time evolution of ��r ,r� , t� obeys

�

�t
��r,r�,t�

= �r� �

�t
�̂�t��r�


=
1

i�
�� dr��r�Ĥ�r���r���̂�r��−� dr��r��̂�r���r��Ĥ†�r��� .

�8�

We define matrices ��t� and H whose elements are ��r ,r��
and �r �Ĥ �r��, respectively. If we represent the integrals in
Eq. �8� as the products of two matrices, Eq. �8� can be simply
written as

�

�t
��t� =

1

i�
�H��t� − ��t�H†� . �9�

Now, we consider a situation where at time t0, the initial
state is represented by the density matrix �0 and that
G�r ,r� , t ;�0 , t0� is the solution to Eq. �9�. We denote a matrix
with elements G�r ,r� , t ;�0 , t0� as G�t ;�0 , t0�. In the system
under consideration, the particle flows out to some other sys-

tem because of the absorbing channel Â. From a classical
viewpoint, this absorption arises when a particle arrives at
the absorbing boundary. We can then recognize the decay of
the particle density as the arrival to the absorbing boundary.
We extend this classical view to our quantum system and
define the arrival time distribution up to the absorbing
boundary by the decay rate of the particle density. Then, the
probability density that the particle arrives at the absorbing
boundary A for the first time at time t when it is in state �0
at time t0, F�A , t ;�0 , t0�, is defined by

F�A,t;�0,t0� = −
�

�t
TrG�t;�0,t0� . �10�

On the right-hand side of Eq. �10�, the trace of matrix
G�t ;�0 , t0� is defined as the integral of the diagonal elements
in space coordinates:

Tr G�t;�0,t0� =� drG�r,r,t;�0,t0� . �11�

By using definition �10�, we extend the classical FPTD con-
cept to a quantum system.

B. Boundary perturbation

Now, we determine the relation between this FPTD and
the response to the boundary perturbation. Suppose there is
an influx of particles into this system; this is represented by
an additional term in Eq. �9� as

�

�t
��t� =

1

i�
�H��t� − ��t�H†� + S�t� . �12�

For the sake of simplicity, we consider a situation where the
nondiagonal elements of S�t� are equal to zero; therefore, the
particles flow into the system from a definite position. In this
situation, the outward flow of particles equals the difference
between the decay rate of the density in the system and the
influx rate. Then, the outward flow at absorbing boundary A
at time t, J�A , t�, is represented as follows:

J�A,t� = −
�

�t
Tr��t� + TrS�t� = −

1

i�
Tr	H��t� − ��t�H†
 .

�13�

By using the Green’s function G�t ;�0 , t�, the solution to
Eq. �12� under the initial condition ��t=0�=�0 is represented
as

��r,r�,t� = G�r,r�,t;�0,t0�

+� dr0�
t0

t

dt�G�r,r�,t;�r0
,t��S�r0,t�� , �14�

where �r0
is a matrix whose elements ��r ,r�� are represented

by
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��r,r�� = ���r − r0� �r = r�� ,

0 �r � r�� .
�15�

Substituting Eq. �14� in to Eq. �13�, we obtain the final re-
sults

J�A,t� = −
�

�t
Tr�G�t;�0,t0��

−� dr0�
t0

t

dt�
�

�t
Tr�G�t;�r0

,t���S�r0,t��

−� dr0Tr�G�t;�r0
,t��S�r0,t� + Tr S�t�

= F�A,t;�0,t0� +� dr0�
t0

t

dt�F�A,t;�r0
,t��S�r0,t�� .

�16�

In order to derive the second equation in Eq. �16�, we used
the definition of the FPTD �10� and that of the Green’s
function—that is, G�t ;�r0

, t�=�r0
.

Equation �16� implies that F�A , t ;� , t0� is the response
function of the outward flux, which responds to the pertur-
bation influx S�t�. Under the limit that t0 is infinitely back-
ward, Eq. �16� is reduced to

J�A,t� = �
−�

t

dt�� dr0F�A,t;�r0
,t��S�r0,t�� . �17�

Equation �17� represents the linear relation between the
boundary perturbation S�r0 , t� and response J�A , t�. Accord-
ing to the linear response theory �6,7�, the response function
R�t� is represented by the response B�t� to the perturbation
A�t� as

B�t� = �
−�

t

R�t − t��A�t��dt�, �18�

and R�t� is the time correlation function of the equilibrium
fluctuations. Equation �17� suggests that the response func-
tion represents the FPTD in boundary perturbation experi-
ments.

For a system in which the Hamiltonian Ĥ is invariant
under time translation, the FPTD is a function of only the
time difference between the departure time t� and the arrival
time t; therefore, it can be written as F�A , t− t� ;�r0

�. In such
cases, the susceptibility ��A ,� ;r0� is defined as the Fourier-
Laplace transformation of the FPTD:

��A,�;r0� � �
0

�

F�A,t;r0�exp�i�t�dt . �19�

When the time dependence of the perturbation S�r0 , t� is rep-
resented by a sinusoidal harmonic oscillation—i.e., S�r0 , t�
=S�r0�+	S�r0�cos��t�—��A ,� ;r0� directly represents the
response:

J�A,t� =� dr0S�r0� +� dr0	S�r0�Re���A,�;r0�ei�t� ,

�20�

where we assume that the integral of the FPTD is equal to 1
so that all particles arrive at the absorbing boundary after an
infinitely long time.

III. APPLICATION TO A DISORDERED CHAIN SYSTEM

A. Model

We consider the Anderson model as an example of the
formulation explained in the previous section; this model is a
one-dimensional tight-binding Hamiltonian with an absorp-
tion potential:

Ĥ = �
j=1

N

�j�
 j�j� + �
j=1

N−1

V��j��j + 1� + �j + 1��j�� − iA�N��N� .

�21�

In this Hamiltonian, �j� represents the Wannier function,
which is localized at site j and corresponds to the discrete
representation of �r� defined in the previous section. The site
energy 
 j is a random variable with a uniform probability
distribution

P�
� = � 1

W
�0 � 
 � W� ,

0 �otherwise� ,

�22�

where W is a positive real number. The transfer energy be-
tween all nearest-neighbor pairs is a real positive constant V.

The last term on the right-hand side of Eq. �21� is the
absorbing potential −iA, where A is a positive real constant.
This term implies that a particle arriving at site N is absorbed
by this potential and flows out of the system. The decay rate
of the particles is obtained from Eq. �5� as follows:

−
�

�t
Tr �̂�t� = −

1

i�
Tr��Â − A†ˆ ��̂�t�� =

2A

�
��N,N,t� .

�23�

Here, we used the completeness of the Wannier function—

i.e., � j � j��j � =1—and the relation �j �Â � j��=−iA� j,N� j�,N.
We consider the influx of a particle to the system at site 1

as a model for the boundary perturbation experiment; there-
fore, the matrix elements of S�t� in Eq. �12� are S�i , j , t�
=S�t��i,1� j,1. As discussed in the previous section, the FPTD
from site 1 to the outside of the system is the response func-
tion for the outward flux in this system. Since the Hamil-
tonian �21� is invariant under time translation, the FPTD
from site 1 to the outside of the system is a function of the
time difference between the departure and arrival. Thus, we
write this FPTD as F�t�, which is defined by Eq. �10� with
�0�i , j�=�i,1� j,1 and t0=0. With regard to the boundary per-
turbation as the particle influx, this FPTD plays a dominant
role in the response of the system.
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B. Results and discussion

We calculated the FPTD for the system described with the
Hamiltonian �21� for A=V and N=100 by numerical diago-
nalization of the Hamiltonian. Note that this Hamiltonian is
not a Hermitian matrix. Therefore, in some cases, it cannot
be diagonalized such that its eigenvalues are degenerate.
However, since we consider the random distribution of the
site energy 
i and employ a numerical method, the Hamil-
tonian �21� can be diagonalized in most cases.

Figure 1 shows the FPTD for a regular system—i.e.,
W=0. The shape of F�t� exhibits two main characteristics:
first, it is almost zero for t less than approximately 47� /V,
and second, it oscillates as a function of time. The former
implies that the particle starting from site 1 rarely flows out
of the system before tc�47� /V. The latter characteristic re-
flects the discrete property of the system. The system has N
finite eigenmodes, and they interfere with each other; hence,
the probability of the particle flowing out of the system var-
ies with time.

The Fourier-Laplace transformation of this FPTD — the
susceptibility ���� — is represented in Fig. 2 as a Colo-Cole
plot. In contrast to the Debye semicircle, which is frequently
used in relaxation processes, ���� represented as a Cole-
Cole plot has a vortexlike shape around ����=0. This shape
mainly originates from the fact that F�t� remains infinitesi-
mal for t� tc. This feature implies that the lower limit of the
integral on the right-hand side of Eq. �19� is approximately
tc, and roughly speaking, it leads to an oscillating term
exp�i�tc� in ����.

This vortex in the susceptibility disappears with the in-
crease in the width of the site-energy distribution. Figure 3
shows the Cole-Cole plot of the susceptibilities averaged for
1000 samples for W=0.8V, 1.6V, 2.0V. In comparison to a
susceptibility of the regular system, ���� for W=0.8V exhib-
its a smaller vortex, and for W=1.6V and W=2.0V, the vor-
tex is not clearly visible. The vortex size can be character-
ized by two quantities: the minimum value of Re����, Rm,

and the minimum value of Im����, Im. In Fig. 4, Rm and Im

are plotted as functions of the width of the site-energy dis-
tribution. Both decrease monotonically with an increase in
the randomness of the system, W.

The decrease in the vortex size can be attributed to the
delay in arrival at the absorbing potential. As the randomness
of the site energy increases, several eigenmodes of the sys-
tem are localized; this causes a delay in the arrival at site N.
Therefore, the FPTD is elongated toward the long-time re-
gion and the, roughly speaking, absolute value of its Fourier-
Laplace transformation rapidly decays as a function of �. On
the other hand, the critical time tc is almost independent of
the randomness and it is determined only by the transfer
energy V and system size N. This means that the frequency

FIG. 1. The first-passage-time distribution for the regular system
�W=0 in Eq. �21�� as a function of t. The system size is N=100, and
the intensity of the absorbing potential is set at A=V. Although the
only results for A=V are presented in this paper, the qualitative
feature is almost independent of the choice of A.

FIG. 2. The Cole-Cole plot of susceptibility ����, Eq. �19�, of
the regular system. The system size is N=100, and the intensity of
the absorbing potential is set at A=V. ���� is plotted as the trajec-
tory on the space spanned by Re���� and Im���� as the frequency
� is the intervening variable; its range is 10−14�� / �V / � ��102.

FIG. 3. The Cole-Cole plot of susceptibility of a disordered
system. Susceptibilities are averaged for 1000 samples of different
site-energy distributions. The range of � is 10−14�� / �V / � ��102.
The system size is N=100, and the intensity of the absorbing po-
tential is set at A=V.
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of oscillation in ���� is constant, but the intensity decays
very rapidly as the randomness increases. Hence, as a result
of the competition between tc and the decay time 
 of the
FPTD, the vortex in the Cole-Cole plot vanishes for 
� tc.

Now, we examine each sample in detail. Figure 5 shows
the susceptibilities of some sample systems and the averaged
susceptibility as a Cole-Cole plot. Note that the susceptibility
of each sample as well as the averaged susceptibility has a
small vortex around ����=0. Therefore, the disappearance
of the vortex is not the result of averaging of the suscepti-
bilities that have a large and phase-shifted vortex, but the
characteristic of the disordered system. On the other hand,
although the averaged susceptibility has only one peak, some
susceptibilities in Fig. 5 show more than one peak. The ex-
istence of a number of peaks indicates that the disordered

system has several modes for arriving at the absorbing po-
tential; the time scales of arrival in these modes are widely
different. This characteristic also appears in classical two-
dimensional disordered systems �4�; this similarity between
quantum one-dimensional systems and classical two-
dimensional systems is an open problem in the boundary
perturbation experiment for disordered systems.

The difference between the sample and averaged suscep-
tibilities increases with an increase in the disorder of the site
energy. We employ the maximum variance �2 of ���� as the
indicator of this difference:

�2 � max
�

������ − �������2� . �24�

Figure 6 shows �2 as a function of the site-energy-
distribution width W. An increase in �2 implies that for a
large W, the response of each sample is different, and this
trend becomes more pronounced as W increases. It has been
reported that in classical one-dimensional and two-
dimensional systems, the susceptibilities to boundary pertur-
bation are non-self-averaging when the disorder is strong;
thus, even in a large system, the difference between sample
and averaged susceptibilities does not converge to zero �3,4�.
Furthermore, it has also been proved that in quantum one-
dimensional disordered systems the electric resistance is
non-self-averaging �19,20�. Considering the physical similar-
ity between the conductance �inverse of resistance� and first-
passage time, it is plausible that in one-dimensional
quantum-disordered systems, the susceptibility to boundary
perturbation is also non-self-averaging.

IV. DISCUSSION AND SUMMARY

In this paper, a theory for the boundary perturbation ex-
periment in quantum systems was proposed. By using an
absorbing potential, we defined the FPTD and showed its
relation to the response function. In our definition of the
FPTD, the shape of the absorbing potential can be selected.

FIG. 4. Rm and Im averaged for 1000 samples are plotted as a
function of W. The system size is N=100, and the intensity of
absorbing potential is set at A=V.

FIG. 5. Susceptibility of various samples for W=1.6V is plotted
in a Cole-Cole plot. Dotted lines show susceptibilities of each of the
20 samples, and the solid line shows the susceptibility averaged for
1000 samples. The range of � is 10−14�� / �V / � ��102. The sys-
tem size is N=100, and the intensity of the absorbing potential is set
at A=V.

FIG. 6. �2 defined in Eq. �24� is plotted as a function of W. The
ensemble average was calculated by using 1000 samples. The sys-
tem size is N=100, and the intensity of the absorbing potential is
A=V.
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This implies that we can employ an appropriate absorbing
potential to describe experimental situations. Actually the
use of some complex absorbing potentials is justified as a
model of atomic detection by fluorescence �21–23�. Also,
there are many works about the construction of complex ab-
sorbing potentials �for a recent review, see, e.g., Ref. �24��.

Since the proposed model is based on the one-particle
Schorödinger equation, it is restricted to dilute systems
where the interaction between particles is negligible. The
extension of this model to interacting systems is a problem to
be dealt with in the future.

We also showed the application of the model to one-
dimensional disordered systems. The FPTD of the system
revealed its response characteristics to the boundary pertur-
bation. While the susceptibility to boundary perturbation os-
cillates as a function of frequency in the regular system, this
oscillation vanishes in a highly disordered system. This re-
sults from the delay in the arrival because of site-energy
randomness. The disorder in the site energy also causes a
discrepancy between the averaged system and each sample.
Based on numerical calculations, we expect that the suscep-
tibility to boundary perturbation is non-self-averaging in
quantum one-dimensional systems.

In the study of Kawasaki et al., it was proved that in a
system where the physical quantities localize, the response
function for boundary perturbation experiments is repre-
sented by the FPTD. �3,4�. In Sec. II, the same relation was
proved for a quantum mechanical system where the physical
quantities do not localize. This relation corresponds to that
between the time correlation function and the response func-
tion in the linear response theory, and we expect that it can
be applied to many other systems.

The advantage of the model based on the first-passage
time is that various boundary perturbation experiments can
be understood in terms of the arrival on the information
about the perturbation applied at one side. The first-passage-
time model is expected to be applicable not only in cases
where information carriers, such as electrons or holes for
electric current, clearly exist but also to the transport of qua-
siparticles.
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